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ABSTRACT

Theoretical models of the remnants of massive stars in a very hot, post–red-supergiant phase display no
obvious instability if standard assumptions are made. However, the brightest observed classical luminous
blue variables (LBVs) may well belong to such a phase. A simple time-dependent theory of moving stellar
envelopes is developed in order to treat deep hydrodynamical disturbances caused by surface mass loss and
to test the moving envelopes for dynamical instability. In the case of steady state outflow, the theory reduces
to the equivalent of the Castor, Abbott, & Klein formulation for optically thick winds at distances well above
the sonic point. The time-dependent version indicates that the brightest and hottest LBVs are both dynami-
cally and radiatively unstable, as a result of the substantial lowering of the generalized Eddington luminosity
limit by the mass-loss acceleration. It is suggested that dynamical instability, by triggering secular cycles of
mass loss, is primarily what differentiates LBVs from the purely radiatively unstable Wolf-Rayet stars. Fur-
thermore, when accurate main-sequence mass-loss rates are used to calculate the evolutionary tracks, the pre-
dicted surface hydrogen and nitrogen abundances of the blue remnants agree much better with observations
of the brightest LBVs than before.

Subject headings: stars: evolution — stars: mass loss — stars: oscillations — stars: variables: other —
stars:Wolf-Rayet

1. INTRODUCTION

The evolutionary status of the luminous blue variables
(LBVs or S Doradus variables) and the underlying cause of
their large cyclical outbursts are still under intense debate.
At least for the fainter and cooler LBVs, an abundance of
evidence now suggests that these are post–red-supergiant
stars (van Genderen 2001; de Jager et al. 2001), just as
Lamers, de Groot, & Cassatella (1983) originally proposed
from their observed locations on the Hertzsprung-Russell
(H-R) diagram. Since modern theoretical evolutionary
tracks can account very well for the detailed characteristics
of these cooler LBVs, especially if the stars are dynamically
unstable as a result of high radiation pressure and partial
ionization of hydrogen and helium in their outer envelopes
(Stothers & Chin 1996; Stothers 1999c), it is reasonable to
try to apply the same type of post–red-supergiant explana-
tion to the brighter and hotter LBVs as well. On the other
hand, it is also possible to see these hotter objects as main-
sequence stars, which are experiencing pulsationally or rota-
tionally enhanced mass loss following widespread interior
mixing—perhaps mixing by rotational currents since many
upper main-sequence stars are observed to be fast rotators
(Langer et al. 1994; Pasquali et al. 1997; Lamers et al. 2001).

In practice, serious problems bedevil both the main-
sequence and post–red-supergiant explanations for the
brightest LBVs. The main-sequence hypothesis suffers a
possible problem with the very small mass, 23 M�, mea-
sured for P Cyg from an atmospheric analysis (Pauldrach &
Puls 1990). Furthermore, the near uniformity of the
observed LBV surface hydrogen abundances, as well as
their specific values of Xsurf ¼ 0:3 0:4, can be accounted for
only in a very ad hoc way. Plausible assumptions must be
made for the probability of very fast rotation, the rotational
mixing time, the degree of ineffectiveness of the mean molec-

ular weight barrier, the instability mechanism, the rate of
enhanced mass loss, and the cause of the mass loss cyclicity.
Regarding possible mechanisms, radial strange-mode pulsa-
tions are now believed to produce only the observed micro-
variations in LBVs (van Genderen 2001), while the existence
of rotational instability near the Eddington luminosity limit
(Langer 1997) depends on how the Eddington limit is
defined in the presence of rotation (Glatzel 1998; Stothers
1999b; Baumgarte & Shapiro 1999; Maeder 1999; Maeder
&Meynet 2000b). According to one interpretation, Maeder
&Meynet (2000b) have argued that if the rotational velocity
approaches break-up, enormous mass-loss rates might
occur for stars with log ðL=L�Þ > 5:8 (the luminosity limit
of known red supergiants) and at Te < 30;000 K (the effec-
tive temperature limit of known LBVs).

Gas nebulae ejected from four LBVs show N/O abun-
dance ratios that indicate a mixture of original stellar gas
and CNO-processed material but are otherwise rather com-
plicated to interpret (Smith et al. 1998; Lamers et al. 2001).
In the case of the nebulae around R127 and S119, the very
low expansion velocities and the long kinematical ages may
indicate a red supergiant, rather than a main-sequence, ejec-
tion event (Smith et al. 1998). The larger expansion velocity
of 70 km s�1 exhibited by the AG Car nebula suggests a yel-
low hypergiant origin (Robberto et al. 1993; Smith et al.
1997; de Jager 1998; Stothers & Chin 1999), which could
account for the presence of dust in the nebula (Voors et al.
2000). As for the P Cyg nebula, its high expansion velocity,
short kinematical age, and tiny mass all point to a very
recent (LBV) origin; however, there is some evidence for a
more distant and older nebula, which could imply a red-
supergiant event 104–105 yr ago (Meaburn et al. 2000).
Although in all these cases it remains possible to imagine a
temporary pseudo–red-supergiant state which might
develop after an enormous main-sequence outburst (Smith
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et al. 1998; Lamers et al. 2001), the known outbursts of
LBVs have always led to effective temperatures that are no
cooler than �8000 K (Humphreys & Davidson 1994).
Moreover, bipolar structure seen in some of the LBV nebu-
lae does not necessarily indicate rapid rotation of an under-
lying main-sequence star, because such structure appears
even in the nebulae around very luminous yellow and red
supergiants like IRC +10420 (Nedoluha & Bowers 1992;
Oudmaijer et al. 1996; Humphreys et al. 1997) and VYCMa
(Wittkowski, Langer, &Weigelt 1998).

Turning now to the existing difficulties with the post–
red-supergiant hypothesis for the brightest LBVs, they
are as follows: No red or yellow supergiants are known
brighter than log ðL=L�Þ � 5:8 (Humphreys & Davidson
1979; de Jager 1998). This may not be a serious obstacle,
despite appearances, because the predicted lifetime in the
yellow-red region is only several 104 yr, at most (Stothers
& Chin 1999). Predicted surface hydrogen abundances,
however, are definitely too low, Xsurf ¼ 0:1 0:2 (Stothers
& Chin 2000). Related to this discrepancy is a potential
surface nitrogen problem (Lamers et al. 2001). Moreover,
it is still not possible to predict the rate of enhanced
mass loss due to dynamical instability, which, along with
the rate of stellar-wind mass loss for red supergiants,
remains the primary unconstrained parameter. Finally,
the observed hot LBV effective temperatures of 20,000–
30,000 K fail to be matched by the theoretically predicted
values of 10,000–16,000 K. To save the post–red-super-
giant hypothesis, it is necessary to assume that the
brightest LBVs are evolving along transient blue loops
that emerge from the yellow and red supergiant region as
a result of dynamical instability (Stothers & Chin 1999).
This possibility, however, does not explain why observed
LBV outbursts develop in the blue region itself and why
LBVs at quiescence dwell only in this region.

The present paper addresses in detail these persistent
shortcomings of the post–red-supergiant hypothesis. It
will be shown that they arise from our oversimplified
assumptions about the magnitude of the stellar wind and
the effect of the wind on the underlying envelope.
Revised stellar models for the brightest LBVs achieve
nearly the observed surface hydrogen (and nitrogen)
abundances and successfully reach dynamical instability
at very hot effective temperatures. Still hotter models
develop radiative instability, which may also explain the
high mass-loss rates of the Wolf-Rayet stars, as Kato &
Iben (1992) originally suggested.

In x 2, the main physical ingredients of our new stellar
models are described, including the atomic opacities, treat-
ment of convection, and rates of stellar-wind mass loss on
and off the main sequence. Our revised surface hydrogen
(and nitrogen) abundances for the brightest LBVs are
derived and discussed in x 2.3.1. The problem of excessively
low effective temperatures of our earlier LBV models is
addressed in x 3 by means of an extensive parameter study,
examining all of the standard free parameters. Since nothing
obvious seems to work, we next examine, in xx 4 and 5, the
possible effect of the acceleration of mass loss on the struc-
ture and stability of the stellar envelope. Showing great
potential, this factor is then incorporated into revised stellar
models in x 6, and leads to our final, successful results. In x 7
a self-contained overview of our current theoretical picture
of LBVs and of their close relatives, the hydrogen-poor WN
stars, is presented.

2. PHYSICAL ASSUMPTIONS

2.1. Opacities

OPAL opacities (Rogers & Iglesias 1992; Iglesias, Rogers,
& Wilson 1992), which are generally very close to the OP
opacities of Seaton et al. (1994), continue to be used in our
stellar models. Published updates (Iglesias & Rogers 1996)
have led to no radical revision of the opacities, although the
new values are�20% larger in the iron opacity bump region
around T ¼ 2� 105 K, chiefly because of the inclusion of
additional metals in the mixture. Since the relevant layers in
massive stars are already strongly convective, the structure
of these layers is not expected to be changed appreciably.
Nevertheless, we have conducted one test using the opacity
updates. The original OPAL opacities have been artificially
modified by multiplying them by a triangular function,

p ¼ max ð1:0; pmax � 0:5j logT � 5:3jÞ : ð1Þ

When these revised opacities are employed with pmax ¼ 1:2
in an evolutionary rerun for an initial stellar mass of 60M�,
hardly any change takes place (x 3).

2.2. Convection

To determine the point of outbreak of convection as well
as the extent of the mixing of material in convective and
semiconvective layers, we have adopted the Schwarzschild
(temperature-gradient) criterion as being approximately
correct for stars of very high mass (Stothers & Chin 2000).
We have everywhere set to zero the distance of convective
overshooting beyond the formal Schwarzschild boundary.

In the superadiabatic layers near the stellar surface,
standard mixing-length theory has been used, with a ratio of
mixing length to local pressure scale height, �p, set to either
1.4 or 2.8 (Stothers & Chin 1997). Because of the physical
separateness of the multiple convection zones formed by the
partial ionizations of hydrogen, helium, and the iron group
of elements in hot stars, a more sophisticated theory of con-
vection would be unwarranted at present.

Turbulent pressure in all of these convection zones has
been ignored, although mixing-length theory predicts the
attainment of supersonic velocities in the iron convection
zone in the hottest and most luminous stellar models. Since
the iron convection zone always lies at the base of the outer
envelope, turbulent pressure would probably not contribute
very much to the integral condition governing dynamical
stability (x 4).

2.3. Rates of Stellar-WindMass Loss

2.3.1. Main-SequenceMass-Loss Rates and Their Consequences

For O-type stars, the standard rates of stellar-wind mass
loss in the convenient form of a fitted formula published by
Nieuwenhuijzen & de Jager (1990) have been used here, as
they seem to be confirmed by the recent observations of
Lamers et al. (1999):

� dM

dt
¼ 1:17� 10�8 L

L�

� �1:64
M

M�

� �0:16

T�1:61
e : ð2Þ

The units of the mass-loss rate here and throughout this
paper areM� yr�1.

During the course of the main-sequence phase, very mas-
sive stars evolve from type O to type B. Unfortunately,
mass-loss rates for the most luminous B-type supergiants
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are overestimated by equation (2), judging from the
improved rates for O and B supergiants that have been pub-
lished by Scuderi et al. (1998). Since agreement with Lamers
et al. (1999) is excellent for the O-type supergiants, the fol-
lowing rates from Scuderi et al. will be applied whenever the
rates predicted by equation (2) exceed them:

� dM

dt
¼ 2:5� 10�13

�
L

L�

�1:25

: ð3Þ

In practice, the overestimation of the amount of mass loss
caused by using equation (2) hardly affects the evolutionary
tracks for initial masses M � 60 M�, but in one important
respect it does alter the evolution at higher masses—by low-
ering the predicted surface hydrogen abundance, Xsurf, dur-
ing the LBV phase. The basic reason for the lowering of
Xsurf is that excessively heavy mass loss on the main
sequence weakens convective instability in the inner enve-
lope; as a consequence, the fully convective zone (FCZ) that
later develops just above the hydrogen-burning shell has a
smaller mass as well as a lower hydrogen content, Xf, than
in the absence of mass loss. When further evolution with
mass loss eventually exposes the FCZ, Xsurf becomes equal
to Xf, which for an initial stellar mass of 90 M� is only 0.11
if equation (2) is adopted. Observations, however, show
Xsurf ¼ 0:3 0:4 (see the references and discussion in Stothers
& Chin 2000). Since our analogous stellar models for 30–60
M� agree very well with these observed surface hydrogen
abundances, the large discrepancy for 90 M� is hard to
explain unless the amount of mass loss is less than expected
from equation (2).

When the present prescription for main-sequence mass
loss based on the use of equation (3) is applied, the models
for 90 M� attain Xsurf ¼ 0:24. This represents a remarkable
improvement, considering the uncertainty of the predicted
size of the FCZ. It should be noted that several earlier
attempts to utilize observations of Xsurf in order to detect
the FCZ in a massive star did not produce unambiguous
results (Stothers & Chin 1976; Langer 1987; Staritsin &
Tutukov 1989).

To derive an estimate of the expected surface nitrogen
abundances (which we have not calculated), we use the evo-
lutionary tracks for stars of 25–85 M� by Schaller et al.
(1992), who adopted input physics similar to our standard
set, and so obtained stellar models very much like ours
(Stothers & Chin 2000). Following Lamers et al. (2001), we
focus on the number ratio N/O of the nitrogen and oxygen
abundances. Our primary assumption is that N/O corre-
lates inversely with Xf in a more or less unique way, regard-
less of the fact that we are using stellar models with different
initial masses rather than stellar models with a fixed initial
mass but with different assumed sizes of the FCZ (due to dif-
ferent assumed main-sequence mass-loss rates). Although
the tables of Schaller et al. (1992) do not explicitly list Xf,
this quantity can be read off from their listed values of sur-
face H after mass loss has exposed the FCZ, while the
accompanying surface N and O abundances yield the num-
ber ratio N/O. Ideally, we should be using fully self-consis-
tent stellar models in the present study. However, all that we
really need from Schaller et al. is their nucleosynthesis data,
which in essence comprise a sequence of correlated He, N,
and O abundances that should be quite general. We thus
find log ðN=OÞ ¼ 2:5� 4:5Xf for 0:18 � Xf � 0:46. The
reason for this correlation is that if the FCZ is large, convec-

tive mixing penetrates farther outward into the less highly
CNO-processed layers of the star. Therefore, rapidly mixed
material in the FCZ contains both a higher hydrogen abun-
dance and a lower N/O number ratio than would be the case
if the FCZ were smaller.

Since observations of very bright LBVs show Xf � 0:35,
we can predict N=O � 8 from the Schaller et al. (1992) mod-
els. Photospheric values of N/O are not known for these
LBVs, but the surrounding gas nebulae show N=O � 1 6
(Lamers et al. 2001). Since the nebulae are expected to con-
sist mostly of ejected FCZ material plus some less evolved
material, we would anticipate finding N/O to be somewhat
lower than �8 in the nebulae. The apparent agreement with
the post–red-supergiant models containing FCZs is striking,
considering that fully CNO-processed material has
N=O � 60 while unprocessed original material has
N=O � 0:1. The post–red-supergiant comparison made by
Lamers et al. (2001) was unsuccessful, because they did not
recognize the significance of the FCZ and they used stellar
models that had suffered too much main-sequence mass loss
and so contained unrealistically small FCZs (Meynet et al.
1994).

2.3.2. Red SupergiantMass-Loss Rates

Rates of stellar-wind mass loss in the red-supergiant
region are very poorly known (Salasnich, Bressan, & Chiosi
1999; Josselin et al. 2000). To be sufficiently conservative,
we allow the possibility that for each initial stellar mass the
rate of mass loss might be such that the star could leave the
red-supergiant branch at any time between the beginning
and the end of central helium burning. Accordingly, as soon
as the star reaches the red region (taken here to be
logTe < 3:7), we begin to remove mass at an arbitrarily high
rate until the star leaves the red region with its central
helium abundance, Yc, still undepleted. The object that
emerges after the envelope stripping is the most massive and
least evolved blue-remnant model possible for the given ini-
tial stellar mass. (This scenario would also apply if Roche
lobe overflow in a binary system were to cause the mass
loss.) Further evolution of the blue remnant, allowing no
additional mass loss, produces a sequence of stellar models
with progressively reduced Yc, each of which in principle
could have been reached by adopting a smaller rate of red-
supergiant mass loss.

2.3.3. Post–Red-SupergiantMass-Loss Rates

In the blue-remnant phase, rates of mass loss are uncer-
tain enough that we have decided to cover the whole range
of physical possibilities, from no mass loss at all to the
instantaneous removal of the whole residual hydrogen enve-
lope, which represents the maximum loss possible. Observed
rates of mass loss from LBVs and from hydrogen-poor WN
stars, although uncertain, can later be used to provide some
constraints on the selection of relevant blue-remnant
models (x 6).

Returning to the original blue-remnant model, if a small
amount of additional mass is arbitrarily removed and evolu-
tion is again allowed to proceed without further mass loss, a
parallel sequence of stellar models is obtained. By repeating
this process with successively greater amounts of initial
mass removed each time, we end up with a two-dimensional
grid of stellar models, specified by the two parameters, M
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and Yc. This grid contains all possible blue-remnant models
for the given initial main-sequence mass.

3. UNMODIFIED STELLAR EVOLUTIONARY MODELS

To obtain a starting model for the blue-remnant phase,
an evolutionary sequence is computed from the zero-age
main sequence to the region of red supergiants. Then mass
is peeled off very quickly until a blue remnant is formed. Ini-
tial stellar masses adopted are 30, 45, 60, and 90 M�. For
the initial hydrogen and metals abundances by mass we
adopt Xe ¼ 0:70 and Ze ¼ 0:03. The blue-remnant mass
turns out to be roughly equal to 1

3 of the initial stellar mass.
Once we have acquired a blue-remnant model, a set of

parallel evolutionary tracks for the phase of core helium
burning is generated at constant mass, as described in
x 2.3.3. Each of these evolutionary tracks is identified by the
mass of the blue remnant, ranging from the maximum possi-
ble mass, when the progenitor has just left the red-super-
giant region, down to the minimum possible mass, when the
blue remnant has just had its hydrogen envelope completely
removed. Accordingly, Xsurf ranges from Xf to 0. Typical
evolutionary tracks on the H-R diagram have already been
displayed in several of our recent papers (e.g., Stothers &
Chin 1996, 1999). The main point to note here is that the
blue remnant immediately takes up a very blue position,
which is hotter for a smaller mass remaining in the hydrogen
envelope but is typically in the range logTe ¼ 4:6 4:9. This
initial position falls along a ‘‘ generalized zero-age main
sequence ’’ for unevolved helium stars that contain small,
homogeneous hydrogen envelopes (Cox & Salpeter 1961;
Giannone 1967; Simon & Stothers 1969). Afterward, the
blue remnant evolves slowly redward, gradually depleting
helium in its core.

Eachmodel along each of the evolutionary tracks is tested
for dynamical instability by employing standard linear adia-
batic perturbation theory and rigorously computing the
eigenvalue (x 4), but no allowance is made for the possible
effect of the mass-loss acceleration on either the equilibrium
structure of the stellar model or its dynamical stability or
instability.We return to this important question later. Table
1 contains our results for a sample of blue-remnant models
in the case of our four adopted initial main-sequence masses
of 30, 45, 60, and 90M�. The table begins, in each case, with

the maximum possible mass for the blue remnant and con-
tinues with progressively reduced masses, until either the
hydrogen envelope is completely removed (Xsurf ¼ 0) or the
central helium abundance becomes very low (Yc ¼ 0:003) at
the specific time when the blue remnant crosses the thresh-
old of dynamical instability. (Dynamical instability occurs
when the hydrostatic equilibrium of the envelope is lost.)
Since the L/M ratio increases as a result of surface mass loss
and of interior chemical evolution, the threshold effective
temperature gradually becomes hotter as mass is removed,
although it never goes past a relatively moderate value of
17,000 K, which is still too cool to explain the hottest LBVs
with effective temperatures as high as 30,000 K.

This raises the question of whether the L/M ratio can
somehow be increased further by including several
neglected factors. The normal evolutionary rise of the star’s
luminosity is due to four effects: (1) the thermonuclear con-
version of helium into carbon (and then oxygen) near the
center, which increases the mean molecular weight of the
convective core; (2) the outward growth of the convective
core, which means more helium being consumed; (3) the
outward march of the hydrogen-burning shell, which adds
material of higher mean molecular weight (helium) to the
outer core; and (4) the increased power output from both
the core and the hydrogen-burning shell, as the star heats up
in consequence of fast core contraction toward the end of
central helium burning. In the present models, the hydro-
gen-burning shell is virtually extinct, owing to the very small
mass contained within the residual hydrogen envelope.
There is some uncertainty, however, about the adopted rate
of the 12Cð�; �Þ16O reaction, as well as about the adopted
distance of convective overshooting beyond the standard
Schwarzschild boundary of the convective core. We have
increased both factors by arbitrarily large amounts, but
have found that the model luminosities change
imperceptibly.

How might axial rotation of the star affect our conclu-
sions? Many upper main-sequence stars are observed to be
rapid rotators. These objects might conceivably follow very
different evolutionary paths than nonrotators do (Maeder
& Meynet 2000a; Lamers et al. 2001). Fortunately for our
purposes, the prior history of the blue remnant is relatively
unimportant in the context of the present models, since it
would have been sufficient for us to have assigned the

TABLE 1

Threshold of Dynamical Instability for Unmodified Models in the Case �P ¼ 1:4

InitialM/M� RemnantM/M� EnvelopeDM/M� Xsurf logðL=L�Þ Yc logTe

30..................... 10.4 0.3 0.22 5.474 0.003 4.03

45..................... 15.4 0.8 0.39 5.572 0.19 3.79

14.9 0.3 0.39 5.592 0.09 3.91

14.8 0.2 0.36 5.613 0.02 4.01

14.8 0.2 0.24 5.657 0.003 4.11

60..................... 21.6 1.1 0.27 5.802 0.24 3.97

20.9 0.4 0.24 5.811 0.14 4.06

20.8 0.3 0.16 5.841 0.03 4.13

20.7 0.2 0.09 5.877 0.003 4.20

90..................... 34.6 0.8 0.24 6.052 0.95 4.07

34.4 0.6 0.23 6.057 0.82 4.10

34.3 0.5 0.07 6.113 0.22 4.16

34.0 0.2 0.03 6.125 0.08 4.18

32.0 0.0 0.00 6.119 0.02 4.24
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helium core mass and the hydrogen envelope mass without
reference to the star’s previous evolution. The angular
momentum stored in the core, however, could be significant
(Heger & Langer 1998). A previous study of the possible
effect of angular momentum on the dynamical stability of
blue-remnant models has demonstrated that the change of
the star’s L/M ratio due to fast core rotation is the most
important factor (Stothers 1999b). If the blue remnant’s
mass is assigned, however, the change in luminosity is
expected to be very small compared to the evolutionary
changes caused by the depletion of helium. Assuming
approximately rigid rotation in the core (Endal & Sofia
1978), we have found that rotating models of massive
helium cores, constructed by solving the rotational equa-
tions of Sackmann&Anand (1970), yield a drop in luminos-
ity that is only � log ðL=L�Þ ¼ �0:02 even for the extreme
case of equatorial breakup velocity.

Some of the input physics used for the outer envelope, like
that used for the core, is imperfectly known. If the star’s
evolution were frozen in time, an increase of opacity or a
decrease of the convective mixing length would raise the
local ratio of radiation pressure to total pressure, and so
would tend to shift the star in the direction of dynamical
instability. On the other hand, the evolving structure of the
envelope must adjust as a whole to any change of the input
physics. If the relative amount of radiation pressure
increases, the envelope will expand faster and so will arrive
at the threshold of dynamical instability at an earlier stage
of central helium depletion, and therefore at a lower lumi-
nosity. The stabilizing effect of a lower luminosity at least
partially counters the destabilizing effect of a higher radia-
tion pressure. As a result, the effective temperature of a star
that has reached the threshold of dynamical instability does
not necessarily increase when an ostensibly destabilizing
change is made in one of the input parameters. Table 2
shows, in fact, that a change in either pmax or �p (x 2) leads
to a virtual cancellation of the stabilizing and destabilizing
effects.

How all these results play out on the H-R diagram can be
seen in Figure 1. Each plotted locus refers to one of our four
adopted initial main-sequence masses. Redward of the four
loci lies the predicted domain of dynamical instability.

Empirical values of luminosity and effective temperature
for actual LBVs and LBV candidates that belong to the Gal-
axy and the LargeMagellanic Cloud have been tabulated by
van Genderen (2001). We adopt van Genderen’s values
here, but omit six objects listed by him as having uncertain
luminosities and also five outlying objects having
log ðL=L�Þ < 5:25, which appear excessively faint. Very
bright LBVs with log ðL=L�Þ > 6:3 are not considered in

this paper. Following Sterken, de Groot, & van Genderen
(1997), we tentatively regard �1 Sco as an uncertain LBV
and therefore omit it. This leaves us with 20 stars, which are
plotted as asterisks in Figure 1.

Notice that, within the possible errors of measurement,
the six faintest stars have locations that agree very well with
our theoretical predictions for dynamically unstable blue-
remnant models. At brighter luminosities, however, the
models are definitely too cool. This disagreement has been a
problem since our original discovery of the existence of the
blue phase of dynamical instability (Stothers & Chin 1994,
1996). There seems to be no way out of this dilemma, except
to point out one loophole that has so far not been plugged
in our models: the possible effect of the acceleration of mass
loss on the structure and dynamical stability of the star. This
omission we now examine in detail.

4. MASS-LOSS ACCELERATION

The theoretical problem of computing a realistic model
for an outflowing stellar envelope has never been wholly
solved. Numerical studies of massive stellar models that
have treated the coupling of the moving envelope to the
deep interior have always had to introduce a number of
mathematical simplifications, such as spherical symmetry,
steady state flow, and (sometimes) purely radiative transfer
of energy (Bisnovatyi-Kogan &Nadyoshin 1972b; Bisnova-
tyi-Kogan 1973; Zytkow 1973; Turolla, Nobili, & Calvani
1988; Kato & Iben 1992; Schaerer 1996; Heger & Langer
1996). For most upper main-sequence stars, however, this
approximate theory seems to work quite well, because the
radiation-driven stellar wind is so weak that it produces very
little disturbance below the photosphere; therefore, the
star’s classical position on the H-R diagram is not sensibly
affected by the wind (Schaerer et al. 1996).

TABLE 2

Threshold of Dynamical Instability for

Unmodified Models with Changed Input

Parameters

pmax �P log ðL=L�Þ Yc logTe

1.0..... 1.4 5.841 0.03 4.13

1.2..... 1.4 5.825 0.06 4.10

1.0..... 2.8 5.880 0.003 4.18

Note.—Remnant M=M� ¼ 20:8, Envelope
DM=M� ¼ 0:3,Xsurf ¼ 0:16.

Fig. 1.—H-R diagram showing the possible locations of stellar models at
the onset of the blue phase of dynamical instability, for four blue-remnant
masses in the case �P ¼ 1:4. None of the models contains any allowance for
the effect of the mass-loss acceleration. To the right of the loci lies the
domain of dynamical instability. Asterisks denote observed LBVs and LBV
candidates at quiescence.
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When the mass-loss rate becomes very high, however, the
disturbance of the subphotospheric layers can no longer be
disregarded. This is certainly true in the case where the time-
scale for ejection of the outer envelope is comparable to the
envelope’s dynamical response time (Zytkow 1972). In this
extreme case, the initiation of the outward mass flow must
occur inside or even below the iron convection zone, where
a huge radiation pressure is created by the iron opacity
bump and is accompanied by strong turbulent motions,
which become supersonic in the hottest stellar models.
Numerical simulation of a representative envelope model
with a state-of-the-art hydrodynamical code (L. Dessart
2000, private communication) has recently confirmed the
existence of strong convective motions and a rapidly accel-
erated outward mass flux over one envelope dynamical
response time.

How can we describe this perturbation of the subphoto-
spheric layers in an approximate way that is amenable to
rapid machine calculation? We recall that the optically thin
part of the atmosphere is generally considered to be approx-
imately stationary and governed by a simple, parameterized
velocity law. One possibility would be to extend these two
assumptions to the underlying layers, all the way down to
the sonic point. Another possibility would be to make some
equally simple assumption about the time-dependent accel-
eration in those layers. We have here adopted this second
possibility. Accordingly, less attention need be paid to the
relatively unimportant problem of the optically thin layers
of the atmosphere, which will be treated here in the gray,
plane-parallel Eddington approximation, since the interior
solution for a radiative envelope always converges quite
rapidly to a unique structure below the surface
(Schwarzschild 1958; Castor, Abbott, &Klein 1975).

The acceleration of mass loss is far from being a known
function, but we may represent it, approximately, as some
power law in the radius, f ðr; tÞ / rðtÞb under the assump-
tion of spherical symmetry of the outer envelope. This func-
tion contains the lifting effect of the steady outward
acceleration of material in the outer envelope (analogous to
the centrifugal force in the case of rotation). We consider
dynamical motions around this steady state flow. The equa-
tion of motion for the mass layer MðrÞ in a nonrotating,
nonmagnetic envelope can be written as

d2r

dt2
¼ � 1

�

dP

dr
� geff ; ð4Þ

where

geff ¼ g� f ¼ gð1�  Þ ð5Þ

and g ¼ GMðrÞ=r2. The ratio f =g is here designated  . In
general, P ¼ Pgas þ Prad þ Pturb, but, for simplicity, the tur-
bulent pressure will be ignored as being unimportant in
comparison with the gas pressure and radiation pressure.
Supplementing equation (4) with the formal definition of
the mass density, �, in

dMðrÞ
dr

¼ 4�r2� ; ð6Þ

we now perturb all variables in the usual way by writing, for
example, r ¼ r0 þ �r exp ði�tÞ, where �r is a small radial dis-
placement. Assuming purely adiabatic perturbations,

�P=P0 ¼ �1��=�0, and linearizing, we eventually find:

d2

dr2
�r

r

� �
þ 4� V þ C

r

� �
d

dr

�r

r

� �

þ V

�1r2
�2r3

GMðrÞð1�  Þ � ð3�1 � 4Þ
�

þð2þ bÞ 
1�  

þ 3�1C

V

�
�r

r
¼ 0 ; ð7Þ

where � ¼ 2�=period, V ¼ �ðd lnPÞ=ðd ln rÞ, C ¼ ðd ln�1Þ
=ðd ln rÞ, and we have dropped the zero subscripts. An
eigenvalue �2 exists when �2 yields �r=r finite at the surface
and zero at the base of the outer envelope with no nodes
lying in between. The necessary and sufficient condition for
dynamical instability is, then, that �2 � 0 (Ledoux 1958;
Stothers 1999a).

Notice that equation (7) contains complete generality for
any nongravitational force of the form rðtÞb. For example, if
rotation is considered and if angular momentum is con-
served locally, the centrifugal force has an exponent
b ¼ �3, in which case we recover equation (1) of Stothers
(1999b). [A misprint in that equation is corrected here: G
should be replaced by Gð1� �Þ, where � is the rotational
equivalent of  .]

As noted above, the form of the mass-loss acceleration is
unknown. In such a state of ignorance it may be safest to
assume that f in the outer envelope remains proportional to
g at all times, and therefore, in conformity with stationary
wind theory (see below), we take b ¼ �2. In this case, an
approximate solution of equation (7) is

�2 ¼ ð5=2Þð3h�1i � 4Þð1�  ÞGM=R3 ; ð8Þ

under the simplifying assumption that the outer envelope
has spatially constant values of � and �r=r (Stothers 1999b).
Here h�1i is the volumetric pressure-weighted mean value of
C1. Dynamical instability occurs if h�1i � 4=3, a condition
that is unchanged from the usual criterion without mass
loss. Clearly, dynamical instability will also occur if  � 1,
but this is a mere formality, since the present formalism
breaks down if  � 1 (see below).

We now show how to relate the surface mass-loss rate,
dM=dt, to  . It is probably a fair approximation to assume
the effective gravity, geff , vanishes when the time needed for
complete loss of the outer envelope, 	 loss, becomes as short
as the envelope’s dynamical response time, 	dyn. If �M rep-
resents the mass of the outer envelope, then

	loss ¼
�M

jdM=dtj ; ð9Þ

while 	dyn is expected to be some small multiple, h, of the
envelope’s free-fall collapse time, which can be defined as

	ff ¼
� R3

GM

�1=2

; ð10Þ

so that 	dyn ¼ h	ff . It is a reasonable assumption to identify
	dyn as the time required for a sound wave to travel from the
surface of the star to the base of the outer envelope and
back. Our published numerical hydrodynamical simula-
tions for radiative stellar envelopes that lie either just below
or just above the threshold of dynamical stability indicate
that h ¼ 5 20 (Stothers 1999a). We adopt h ¼ 10.
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The connecting link between 	 loss and 	dyn is the effective
gravity, geff . Since acceleration goes in general as t�2,
elementary dimensional analysis suggests that

geff ¼
�
1�

� 	dyn
	loss

�2
�
g : ð11Þ

This implies  ¼ ð	dyn=	lossÞ2. Therefore, the needed rela-
tion of  to dM=dt is

dM

dt

����
���� ¼  1=2�M

h	ff
: ð12Þ

Notice that, since �M ¼ ð4=3Þ�R3h�i, with h�i approxi-
mately constant, we have jdM=dtj /  1=2T�3

e M1=2L3=4.
It must not be thought that equation (12) imposes an

upper limit on the possible rate of mass loss. If the actual
rate of mass loss were to exceed the value given by the right-
hand side of equation (12) evaluated with  ¼ 1, this would
mean only that more mass than �M gets ejected in a time
	dyn. In such circumstances, the present formalism would
break down, and an explicit hydrodynamical calculation of
the stellar envelope would be needed. In post–red-super-
giant models of LBVs, except for the hottest and brightest
objects,  remains less than 0.5 (outside of eruption), while
in models of comparably bright main-sequence stars  is
only 10�7, the smallness of this value being due to the large
mass contained within the star’s outer envelope. On the
supposition that 
 Car is a superluminous main-sequence
star (Stothers 2000),  outside of eruption would still be
only 10�2.

All of the physical uncertainties in the present theoretical
formulation are subsumed under the constant parameter h,
since we wish to allow  to be the one freely adjustable
parameter fitted to observations. It is instructive and useful
to compare our approach with the traditional stationary
wind approach in which the velocity law is typically
assumed to be vðrÞ ¼ v1ð1� R0=rÞ�, where R0 and � are
adjustable constants and v1 is taken from stellar observa-
tions. In this formalism, the mass-loss acceleration is given
by f ðrÞ ¼ v dv=dr, a quantity that vanishes at r ¼ R0 (typi-
cally taken to be the sonic-point radius) and that behaves
like r�2 at r4R0. Our choice of b ¼ �2 is clearly equivalent
to considering the regime of supersonic constant flow veloc-
ity. By adopting the standard equations of conservation of
mass and conservation of momentum (Castor et al. 1975,
eqs. [16] and [17]), we can easily make the formal
identification:

h ¼ �1=2

3

R0

R

� �1=2 h�i
�R

; ð13Þ

where �R is the mass density at the photosphere. In the sta-
tionary wind approach, jdM=dtj ¼ 4�R2�R v1 and
 ¼ v21 �R0=ðGMÞ, so that the solution is completely
determined by the assumed velocity law. In our present
approach, we allow  to be the adjustable free parameter
and link it to dM=dt via equation (12). We can make no
prediction for v1, which has to be determined from the
optically thin layers that are essentially ignored here.

5. GENERALIZED EDDINGTON LUMINOSITY LIMIT

In the outer envelope of the star where the massMðrÞ can
be taken to be constant, Eddington (1921) showed that the

ratio of radiation pressure to total pressure, 1� �, has a
simple analytic expression as long as the material is in radia-
tive, or nearly radiative, equilibrium. In our blue-remnant
models, this radiative condition holds to a very close
approximation within all layers above the iron convection
zone, which forms the base of the outer envelope. Modify-
ing Eddington’s relation to allow for a uniform reduction of
gravity due to the mass-loss acceleration, we find at any
layer r:

1� � ¼ h�iL=½4�cGMð1�  Þ� ; ð14Þ

where the opacity is averaged with respect to the overlying
distribution of radiation pressure:

1

h�i ¼
1

Prad

Z r

R

1

�

dPrad

dr
dr : ð15Þ

Equation (14) depends also on the assumption that the
luminosity remains essentially unchanged by the work done
in lifting matter out of the star’s gravitational potential well
and in giving the expelled matter its terminal velocity
(Forbes 1968; Schaerer 1996; Heger & Langer 1996).
This approximation is always valid to within 1% for the
blue remnants being considered in this paper if
jdM=dtj < 10�4 M� yr�1.

An upper limit to the star’s luminosity can be obtained
if we set � ¼ 0 in equation (14). This condition yields the
generalized Eddington luminosity limit,

LE ¼ 4�cGMð1�  Þ
h�i : ð16Þ

Notice that LE is reduced by the factor 1�  from its stand-
ard value.

In previous studies of the effects of radiation pressure and
the Eddington luminosity limit on blue-remnant models,
attention was focused on the driving efficiency of atomic line
opacity. Although only the hydrogen-free Wolf-Rayet stars
were modeled in those studies, the results obtained are of
more general applicability because LBVs, like Wolf-Rayet
stars, possess high central condensations, small-mass outer
envelopes, and large surface radii caused by the iron opacity
bump. A dispute still exists about whether metallic absorp-
tion lines above the photosphere can provide all of the
momentum needed to drive the large observed mass-loss
fluxes of 10�5 to 10�4 M� yr�1 (Pauldrach et al. 1985; Tur-
olla et al. 1988; Lucy & Abbott 1993; Pistinner & Eichler
1995; Schmutz 1997) or whether the iron opacity bump is
indispensable in getting the mass-loss process started inside
the optically thick layers below the photosphere (Kato &
Iben 1992; Eichler, Bar Shalom, & Oreg 1995). A potential
problem is that convective motions in the iron convection
zone may carry a significant portion of the total flux coming
from the undisturbed interior, making it less likely that a
super-Eddington radiative luminosity below the photo-
sphere can successfully accelerate matter outward (Schaerer
1996). Although strange-mode pulsations (Heger & Langer
1996) or convective turbulence (Stothers 2000) might pro-
vide the missing momentum for the surface mass loss, our
newmodels suggest that the iron convection zone in the hot-
test of the blue remnants actually becomes radiatively
unstable by itself, owing to the fact that the mass-loss accel-
eration and high opacities bring the Eddington limit down
far enough.
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6. MODIFIED STELLAR EVOLUTIONARY MODELS

In order to incorporate the mass-loss acceleration in our
stellar models, we shall adopt the hydrostatic version of
equation (4) with a modified gravity and the linear adiabatic
wave equation (7) with b ¼ �2. For simplicity, we assume
that  is constant with depth in the outer envelope.

The formal limiting case is represented by  ¼ 1. In prac-
tice, this limit cannot be reached because the Eddington
limit, at which � ¼ 0 and so � ¼ 0, will be reached first. If
L � LE locally, and if convection is absent or inefficient, the
overlying layers will be expelled by radiation pressure. In
our models, this radiative instability occurs for values of  
that are sufficiently large but still less than unity. The layers
in which the local mass density, �, formally vanishes always
lie inside the iron convection zone owing to the large opac-
ities there.

Recomputation of our outer envelope models to include
the mass-loss acceleration can be done without recalculating
any of the evolutionary tracks, since the stellar interior is
unaffected and the structure of the outer envelope is simply
determined by performing a numerical integration down
from the surface, after specifying the envelope parameters
M, Xsurf, Ze, �P, L, Te, and  . The needed luminosities for
fixed M, Xsurf, Ze, and �P are taken from x 3. The effective
temperatures, however, must be recomputed, and it is also
necessary to determine  . This is done by computing a large
set of envelope models for various  and Te values, and by
finding that particular model which attains simultaneously
the thresholds of radiative instability and of dynamical
instability, because each threshold can determine only one
free parameter,  or Te. Although we cannot prove unique-
ness of our solution rigorously, we have never found an
actual counterexample in practice.

Table 3 contains our derived values of  and Te for 10
representative stellar models, which include four blue-rem-
nant masses and three evolutionary stages. In the case of the
smallest mass, only one stage appears, because dynamical
instability for this mass does not occur until the end of
central helium burning.

Examination of Table 3 leads to several interesting con-
clusions about the critical effective temperature for such a
double instability. First, Te turns out to be virtually inde-
pendent of the stellar mass, luminosity, and surface hydro-
gen abundance—in other words, of all of the present

evolutionary uncertainties about the blue remnants.
Second, Te represents the highest value possible for a blue
remnant at the threshold of dynamical instability, because
hotter models are found to be only radiatively (and not
dynamically) unstable if other parameters are held fixed.
Third, Te shows only a weak dependence on the convective
mixing length, increasing from 22,000 K for �P ¼ 1:4 to
29,000 K for �P ¼ 2:8. Under the assumption of even larger
values of �P, little further increase of Te could be gained,
since for an effective temperature above �30,000 K hydro-
gen and helium are completely ionized and dynamical insta-
bility is then not possible in any case.

The reason why the critical effective temperature
increases with �P is easy to understand. Models with more
efficient convection (greater �P) allow a larger luminous flux
to be transported without disruption to the envelope. There-
fore, a larger  can be tolerated, augmenting the relative
pressure of radiation. This lowers h�1i and so increases the
envelope’s tendency to dynamical instability. Consequently,
dynamical instability can occur at a higher effective temper-
ature, where, otherwise, the zones of partial ionization of
hydrogen and helium would be too small to be of much
importance.

Mass-loss rates at the critical effective temperature can be
computed from equation (12). These are also entered in
Table 3. If the observed mass-loss rate at any critical effec-
tive temperature were to exceed the listed value, the outer
envelope would be radiatively unstable. It is, therefore, reas-
suring to note how similar the critical mass-loss rates found
here are to those derived previously for Wolf-Rayet model
envelopes by using traditional stationary wind theory (Kato
& Iben 1992; Schaerer 1996; Heger & Langer 1996).

If, on the other hand, the observed mass-loss rate were
found to be less than the critical value listed in Table 3, the
outer envelope would be radiatively stable. We now con-
sider such radiatively stable envelope models. By formally
assigning a (subcritical) mass-loss rate, the two quantities  
and Te can be uniquely determined so as to satisfy the condi-
tion that the model lie exactly at the threshold of dynamical
instability. Because jdM=dtj /  1=2T�3

e , approximately,
and the dependence of Te on  is very weak at the threshold,
the critical effective temperature will formally decrease if the
mass-loss rate is increased. Derived Te values are presented
in Table 4 for �P ¼ 1:4 and in Table 5 for �P ¼ 2:8. The
tabulated mass-loss rates run from log j _MMj ¼ �4:4 down to

TABLE 3

Threshold of Dynamical Instability for Modified Hot Models at the Eddington Limit

�P ¼ 1:4 �P ¼ 2:8

RemnantM/M� Xsurf log ðL=L�Þ Yc  logTe log j _MMj  logTe log j _MMj

10.4 ....................... 0.22 5.474 0.003 0.15 4.36 �4.89 0.24 4.47 �5.57

15.4 ....................... 0.39 5.479 0.95 0.36 4.31 �4.67 0.42 4.45 �5.34

5.572 0.19 0.23 4.33 �4.82 0.30 4.45 �5.43

5.657 0.003 0.07 4.32 �5.00 0.16 4.45 �5.53

21.6 ....................... 0.27 5.733 0.95 0.27 4.35 �4.55 0.34 4.46 �5.21

5.802 0.24 0.16 4.35 �4.67 0.24 4.46 �5.30

5.880 0.003 0.01 4.36 �5.28 0.10 4.46 �5.46

34.6 ....................... 0.24 6.052 0.95 0.11 4.35 �4.53 0.20 4.45 �5.13

6.113 0.20 0.00 a a 0.09 4.45 �5.29

6.170 0.003 0.00 a a 0.00 a a

a Models at all effective temperatures are either dynamically unstable or radiatively unstable.
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the corresponding limits already listed in Table 3, in steps of
�0.3. The dependence of the results on �P is slight, as
expected.

Stellar models at the threshold of dynamical instability
are plotted on the H-R diagram in Figure 2 for �P ¼ 1:4
and in Figure 3 for �P ¼ 2:8. Separate loci are shown for
each of the blue-remnant masses and for each specified
mass-loss rate. To the left of each plotted locus, progres-
sively hotter stellar models with the same mass-loss rate
become progressively more dynamically unstable until radi-
ative instability also sets in. The threshold effective tempera-
ture for radiative instability may in some cases lie beyond
the ionization limit for dynamical instability, �30,000 K.
To the right of each plotted locus, cooler stellar models with
the same mass-loss rate become progressively more stable
dynamically until they cross the threshold of dynamical
instability just to the left of the threshold that exists in the
formal absence of mass loss (Fig. 1).

To compare these predictions with observations, nine
LBVs and LBV candidates whose mass-loss rates have been
measured at times of quiescence are plotted in Figures 2 and
3 (the nine stars are identified in Table 6). It is clear that the
three least luminous objects have mass-loss rates that are
small enough as not to interfere with the determination of
their dynamical stability or instability. Our earlier conclu-

sion (based on Fig. 1) that these three objects are probably
encountering dynamical instability remains unchanged.

As for the six brighter LBVs, two of the three faintest in
this group show mass-loss rates that agree closely with our
revised predictions for blue remnants at the threshold of
dynamical instability. The one exception is R 71, having
log j _MMj ¼ �6:2 according to Leitherer (1997), for which
we would have expected to find log j _MMj ¼ �4:7. This
star’s mass-loss rate should perhaps be remeasured in view
of the fact that Leitherer (1997) originally estimated
log j _MMj ¼ �6:15 for HR Car, whereas later work (White
2000) increased this to�4.7.

The three brightest LBVs that are plotted show mass-loss
rates so large that their outer envelopes must be radiatively
unstable, according to our revised stellar models. Their
atmospheres must be radiatively unstable, too (de Jager et
al. 2001). Notice that the measured rates lie an order of mag-
nitude above those of ordinary O and B supergiants with
the same luminosities (Scuderi et al. 1998). This alone would
suggest that these three stars are not main-sequence objects.

7. CONCLUSION

An extensive parameter study has been conducted in
order to understand better the observed properties of LBVs,

TABLE 4

Threshold of Dynamical Instability for Modified Hot Models in the Case �P ¼ 1:4

logTe

RemnantM/M� Xsurf log ðL=L�Þ Yc log j _MMj ¼ �4:4 log j _MMj ¼ �4:7

10.4 ....................... 0.22 5.474 0.003 4.20 4.31

15.4 ....................... 0.39 5.479 0.95 4.23 4.31

5.572 0.19 4.21 4.30

5.657 0.003 a a

21.6 ....................... 0.27 5.733 0.95 4.31 4.35

5.802 0.24 4.28 4.35

5.880 0.003 a a

34.6 ....................... 0.24 6.052 0.95 4.31 4.35

6.113 0.20 a a

6.170 0.003 a a

a Models at all effective temperatures are either dynamically unstable or radiatively unstable.

TABLE 5

Threshold of Dynamical Instability for Modified Hot Models in the Case �P ¼ 2:8

logTe

RemnantM/M� Xsurf log ðL=L�Þ Yc log j _MMj ¼ �4:4 log j _MMj ¼ �4:7 log j _MMj ¼ �5:0 log j _MMj ¼ �5:3

10.4 ....................... 0.22 5.474 0.003 4.19 4.28 4.37 4.44

15.4 ....................... 0.39 5.479 0.95 4.20 4.29 4.38 4.44

5.572 0.19 4.18 4.27 4.36 4.43

5.657 0.003 4.05 4.20 4.31 4.40

21.6 ....................... 0.27 5.733 0.95 4.28 4.36 4.42 4.46

5.802 0.24 4.25 4.34 4.41 4.46

5.880 0.003 a a 4.33 4.42

34.6 ....................... 0.24 6.052 0.95 4.29 4.37 4.43 4.45

6.113 0.20 a a 4.38 4.45

6.170 0.003 a a a a

a Models at all effective temperatures are either dynamically unstable or radiatively unstable.

320 STOTHERS Vol. 568



here considered to be post–red-supergiant stars. Input
parameters that have been freely varied in the present work
include the following: surface mass-loss rates for main-
sequence stars, for red supergiants, and for blue remnants;
mass of the helium core in the blue remnant; mass of the
hydrogen envelope; central helium abundance, Yc;
12Cð�; �Þ16O reaction rate; convective core overshooting
distance; axial rotation rate; envelope metal opacities; con-

vective envelope mixing-length parameter, �P; and ratio of
mass-loss acceleration to gravitational acceleration,  . Of
these, the most influential factors are the helium core mass,
the hydrogen envelope mass, Yc, and  . The helium core
mass establishes the luminosity of the blue remnant, while
the three other parameters mainly regulate its effective tem-
perature, primarily through their fine-tuning of the Edding-
ton luminosity ratio LE=L. Linkage of  to the actual mass-
loss rate occurs via equation (12).

A consistent evolutionary picture of the LBVs can now be
sketched. Except for the very rare superluminous objects
like 
 Car, classical LBVs have most likely originated from
massive late-type helium-burning supergiants, probably in a
yellow-red phase of dynamical instability (Stothers & Chin
1996). In all cases, their lifetimes are a small fraction of the
star’s total helium-burning lifetime of ð2 3Þ � 105 yr. We
now discuss these stars in more detail after grouping them
into three ranges of luminosity.

Faint LBVs with log ðL=L�Þ ¼ 5:4 5:7.—Stars with these
luminosities emerge from the red-supergiant region as
dynamically unstable yellow supergiants, and then execute a
wide blue loop on the H-R diagram. When they cool to
10,000–15,000 K, dynamical instability sets in for the sec-
ond time. Figure 1 confirms that predicted and observed
effective temperatures for such faint, cool LBVs agree with
each other. Theoretical lifetimes range from �103 yr at
log ðL=L�Þ ¼ 5:4 (Stothers & Chin 1996) to �2� 104 yr at
log ðL=L�Þ ¼ 5:7 (see below); the average value is perhaps
�1� 104 yr. Transient blue loops are repeatedly triggered
by the dynamical instability (Stothers & Chin 1995). If
either the original blue loop or any of the transient blue
loops extends past �30,000 K, the star could become radia-
tively unstable at that time, provided that its accompanying
mass-loss rate is equal to or greater than what is now
observed in its LBV state, specifically, log j _MMj � �5:5. We
note that such hot objects could appear as hydrogen-poor
WN stars. Observed WN stars of the appropriate luminos-
ity and effective temperature show, in fact, log j _MMj � �4:7
(Nugis &Niedzielski 1995; Leitherer, Chapman, &Koribal-
ski 1997; Hamann & Koesterke 1998a, 1998b, 2000; Nugis,
Crowther, &Willis 1998).

Intermediate-luminosity LBVs with log ðL=L�Þ ¼
5:7 6:0.—The post–red-supergiant phase begins with a
dynamically unstable yellow-supergiant phase, followed by
a long blue loop. Near the tip of the loop, the blue remnant
encounters radiative instability. Evolving away from the tip
as helium is further depleted, the star eventually becomes
dynamically unstable (for the second time) at effective
temperatures of 20,000–30,000 K if, as is observed,
log j _MMj � �4:7. (The effect of the mass-loss acceleration
raising the threshold effective temperature from �12,000 K
is very substantial.) Mass loss occurs heavily from now on
in repeated cycles until hydrogen is completely gone from
the star.Meanwhile, the star’s evolution stalls in this general
region of the H-R diagram owing to its continuing, rapid
loss of hydrogen and the resulting short lifetime of this
phase,�5� 104 yr, of which the final�3� 104 yr (or more)
are spent in the hydrogen-poor WN state (Stothers & Chin
2000).

Bright LBVs with log ðL=L�Þ ¼ 6:0 6:3.—These stars
may never have been red at all, although they are expected
to have briefly occupied the yellow region, when they would
have been dynamically unstable for a short time. They are
now very blue. Radiative instability (and dynamical insta-Fig. 3.—Same as Fig. 2, but for �P ¼ 2:8

Fig. 2.—H-R diagram showing the possible locations of stellar models at
the threshold of dynamical instability, for four blue-remnant masses in the
case �P ¼ 1:4. All models include the effect of the mass-loss acceleration,
for which the associated values of log j _MMj are indicated in the rectangular
box at the top. To the left of the plotted loci lies the domain of dynamical
(and radiative) instability for each associated mass-loss rate, although
dynamical instability itself cannot occur blueward of the dashed line repre-
senting the ionization limit. Asterisks denote well-observed LBVs and LBV
candidates at quiescence whose mass-loss rates are known. Observed values
of log j _MMj are indicated.
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bility, too, if Te < 30;000 K) theoretically persists from this
time onward, because at the observed mass-loss rate of
log j _MMj ¼ �4:2 the residual hydrogen envelope is stripped
off in a mere �1� 104 yr. Such a bright and hot LBV is
expected to look like a hydrogen-poorWN star, which some
observations apparently confirm (Pasquali et al. 1997).
Although observations also support our theoretically pre-
dicted effective temperatures of 20,000–30,000 K, the appa-
rent agreement may be somewhat misleading.
Observationally, it is uncertain whether the true photo-
spheres of these heavily mass-losing stars have been
observed or not (de Koter, Lamers, & Schmutz 1996). Theo-
retically, the effective temperatures of our models are also
unreliable for mass-loss rates that are so large that they per-
turb the star’s structure to depths lying well below the iron
convection zone.

The chief lack now in our evolutionary models is a hydro-
dynamical computation of the turbulent outer envelope.
There seems to be no acceptable way to substitute a static
boundary condition or even a stationary-flow atmospheric
model as a boundary condition if the mass-loss rate exceeds
log j _MMj ¼ �4:7. In stars so luminous and hot, the entire
outer envelope (and perhaps even some of the deeper layers)
must be treated as representing the massive outflowing
stellar wind.
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munications from C.-w. Chin, L. Dessart, A. M. van Gen-
deren, and C. de Jager. The referee’s detailed suggestions
for improvements of the text are also much appreciated.
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